Evaluation of a gravity-driven automated nasal irrigation system compared with manual syringe irrigation: a randomized crossover trial
DOI:
https://doi.org/10.18203/issn.2454-5929.ijohns20260003Keywords:
Nasal irrigation, Mucociliary clearance, Saccharin transit time, Randomized crossover trial, Patient satisfactionAbstract
Background: Large-volume saline nasal irrigation is widely recommended for sinonasal hygiene, but device design and pressure control influence effectiveness and tolerability. A novel automated irrigation device (NasiCare) utilizes gravity-regulated flow to deliver consistent low-pressure irrigation and may improve user experience compared with manual syringe use. Objectives were to compare the effects of an automated nasal irrigation device versus manual syringe irrigation on mucociliary clearance (MCC), safety, and user satisfaction in healthy adults.
Methods: In this prospective, single-blind, randomized crossover trial, 40 healthy volunteers aged 18-60 years completed two intervention visits: automated NasiCare irrigation and manual syringe irrigation. MCC was assessed using saccharin transit time (STT) pre- and post-irrigation. Adverse effects were recorded using a standardized checklist, and user satisfaction was evaluated across four domains (0-10 visual analog scale).
Results: Baseline pre-irrigation STT did not differ significantly between devices (median 6.58 vs. 6.95 minutes; p=0.380). Both devices resulted in significant post-irrigation STT improvement (p<0.001 for each), with no difference in post-irrigation STT (median 4.76 vs. 4.91 minutes; p=1.000) or STT change (1.59 vs. 1.53 minutes; p=0.085). Adverse events were infrequent and similar between groups, although nasal pain or tightness occurred only with syringe irrigation. Satisfaction scores were significantly higher for NasiCare across all domains, including overall satisfaction (median 10.0 vs. 7.0; p<0.001).
Conclusions: Automated low-pressure nasal irrigation provides MCC benefits comparable to manual syringe irrigation while demonstrating superior user acceptability and similar safety. These findings support the automated device as a reliable and more user-friendly alternative for routine nasal irrigation.
Metrics
References
Bastier P-L, Lechot A, Bordenave L, Durand M, de Gabory L. Nasal irrigation: From empiricism to evidence-based medicine. A review. Eur Ann Otorhinolaryngol Head Neck Dis. 2015;132(5):281-5. DOI: https://doi.org/10.1016/j.anorl.2015.08.001
Principi N, Esposito S. Nasal Irrigation: An Imprecisely Defined Medical Procedure. Int J Environ Res Public Health. 2017;14(5):516. DOI: https://doi.org/10.3390/ijerph14050516
Aeumjaturapat S, Seresirikachorn K, Snidvongs K, Roongrotwattanasiri K, Jitaroon K, Tanjararak K, et al. Thai guideline for allergic rhinitis 2022. Thai J Otolaryngol Head Neck Surg. 2022;23:53-312.
Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(S29):1-464. DOI: https://doi.org/10.4193/Rhin20.601
Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Internat Forum Allergy Rhinol. 2021;11(3):213-739. DOI: https://doi.org/10.1002/alr.22741
Succar EF, Turner JH, Chandra RK. Nasal saline irrigation: a clinical update. Internat Forum Allergy Rhinol. 2019;9(S1):S4-8. DOI: https://doi.org/10.1002/alr.22330
Chitsuthipakorn W, Kanjanawasee D, Hoang MP, Seresirikachorn K, Snidvongs K. Optimal Device and Regimen of Nasal Saline Treatment for Sinonasal Diseases: Systematic Review. OTO Open. 2022;6(2):2473974X221105277. DOI: https://doi.org/10.1177/2473974X221105277
de Gabory L, Kérimian M, Baux Y, Boisson N, Bordenave L. Computational fluid dynamics simulation to compare large volume irrigation and continuous spraying during nasal irrigation. Internat Forum Allergy Rhinol. 2020;10(1):41-8. DOI: https://doi.org/10.1002/alr.22458
Wang Y, Jin L, Liu SX, Fan K, Qin ML, Yu SQ. Role of nasal saline irrigation in the treatment of allergic rhinitis in children and adults: A systematic analysis. Allergol Immunopathol (Madr). 2020;48(4):360-7. DOI: https://doi.org/10.1016/j.aller.2020.01.002
Pynnonen MA, Mukerji SS, Kim HM, Adams ME, Terrell JE. Nasal saline for chronic sinonasal symptoms: a randomized controlled trial. Arch Otolaryngol Head Neck Surg. 2007;133:1115-20. DOI: https://doi.org/10.1001/archotol.133.11.1115
Piromchai P, Puvatanond C, Kirtsreesakul V, Chaiyasate S, Suwanwech T. A multicenter survey on the effectiveness of nasal irrigation devices in rhinosinusitis patients. Laryngoscope Investig Otolaryngol. 2020;5(6):1003-10. DOI: https://doi.org/10.1002/lio2.497
Piromchai P, Puvatanond C, Kirtsreesakul V, Chaiyasate S, Thanaviratananich S. Effectiveness of nasal irrigation devices: a Thai multicentre survey. Peer J. 2019;7:e7000c. DOI: https://doi.org/10.7717/peerj.7000
Arifianto M, Hendriyanto D, Hendradewi S, Kandhi PW. The effect of isotonic saline nasal irrigation on mucociliary transport time on traffic volunteer officers in Surakarta, Indonesia. Afr J Biol Sci. 2024;6:272-8.
Behera SK, Radhakrishnan ST, Swain S. Nasal irrigation using saline at room temperature or body temperature: which is more beneficial in chronic rhinosinusitis? Int J Otorhinolaryngol Head Neck Surg. 2019;5:1005-8. DOI: https://doi.org/10.18203/issn.2454-5929.ijohns20192720
Caponnetto P, Emma R, Benfatto F, Ferlito S, Gulino A, Maniaci A, et al. Saccharin test: Methodological validation and systematic review of the literature. Ear Nose Throat J. 2024;103(8):NP494-507. DOI: https://doi.org/10.1177/01455613211064044
Plaza Valía P, Carrión Valero F, Marín Pardo J, Bautista Rentero D, González Monte C. Saccharin test for the study of mucociliary clearance: reference values for a Spanish population. Arch Bronconeumol. 2008;44(10):540-5. DOI: https://doi.org/10.1016/S1579-2129(08)60100-7
Priscilla J, Padmavathi R, Ghosh S, Paul P, Ramadoss S, Balakrishnan K, et al. Evaluation of mucociliary clearance among women using biomass and clean fuel in a periurban area of Chennai: A preliminary study. Lung India. 2011;28(1):30-6. DOI: https://doi.org/10.4103/0970-2113.76298
Rodrigues F, Freire AP, Uzeloto J, Xavier R, Ito J, Rocha M, et al. Particularities and Clinical Applicability of Saccharin Transit Time Test. Int Arch Otorhinolaryngol. 2019;23(2):229-40. DOI: https://doi.org/10.1055/s-0038-1676116
Batmaz SB, Alicura Tokgöz S. Relationship between nasal mucociliary clearance and disease severity in children with allergic rhinitis: A comparative cross-sectional study. Allergol Immunopathol (Madr). 2020;48(2):137-41. DOI: https://doi.org/10.1016/j.aller.2019.06.007
Bencova A, Vidan J, Rozborilova E, Kocan I. The impact of hypertonic saline inhalation on mucociliary clearance and nasal nitric oxide. J Physiol Pharmacol. 2012;63(3):309-13.
Cmejrek RC, Gutman MT, Torres AJ, Keen KJ, Houser SM. The effect of injection immunotherapy on mucociliary clearance in allergic patients. Otolaryngol Head Neck Surg. 2005;133:9-15. DOI: https://doi.org/10.1016/j.otohns.2005.03.062
Dülger S, Akdeniz Ö, Solmaz F, Şengören Dikiş Ö, Yildiz T. Evaluation of nasal mucociliary clearance using saccharin test in smokers: A prospective study. Clin Respir J. 2018;12:1706-10. DOI: https://doi.org/10.1111/crj.12733