Anatomy of the vestibular aqueduct and its clinical importance: a review
DOI:
https://doi.org/10.18203/issn.2454-5929.ijohns20260078Keywords:
Vestibular aqueduct, Anatomy, Enlarged vestibular aqueduct syndrome, Sensorineural hearing loss, Computed tomographyAbstract
The vestibular aqueduct (VA) is a bony channel that houses the endolymphatic duct, linking the inner ear to the endolymphatic sac located in the posterior cranial fossa. The VA plays a crucial role in the metabolism and pressure buffer of the inner ear, and its enlargement can result in hearing impairment and balance disorders. The human VA often shows anatomical variations and even imaging can be difficult to appreciate, so clinicians need more data on the normal anatomy of VA for better understanding of radiological evaluation of enlarged VA. Enlarged vestibular adequate syndrome (EVAS) is reported to be one of the commonest anomalies of the inner ear associated with sensorineural hearing loss, although the exact mechanism of such loss is unclear. The EVAS can cause progressive sensorineural hearing loss (SNHL), in addition to sudden SNHL, conductive hearing loss, and mixed hearing loss. Mutations in a gene called SLC26A4 (formerly known as the PDS gene) are the primary cause of EVA and hearing loss. EVAS can be isolated or associated with cochlear malformation such as incomplete partition. There are no established criteria for diagnosis of EVAS. With advancement in imaging techniques, this VA and its anomalies are gaining greater interest among clinicians in recent years. High resolution computed tomography (HRCT) of temporal bone or MRI are helpful for the diagnosis of EVAS, with comparison to the adjacent posterior semicircular canal.
Metrics
References
Saeed HS, Kenth J, Black G, Saeed SR, Stivaros S, Bruce IA. Hearing loss in enlarged vestibular aqueduct: a prognostic factor systematic review of the literature. Otol Neurotol. 2021;42(1):99-107. DOI: https://doi.org/10.1097/MAO.0000000000002843
Sennaroglu L, Yilmazer C, Basaran F, Sennaroglu G, Gursel B. Relationship of vestibular aqueduct and inner ear pressure in Ménière’s disease and the normal population. Laryngoscope. 2001;111(9):1625-30. DOI: https://doi.org/10.1097/00005537-200109000-00025
Su-zhen Z, Wei-yan Y, Zi-ming W. Relationship between the external aperture and hearing loss in large vestibular aqueduct syndrome. Chin Med J. 2006;119 (3):211-6.
Ruthberg J, Ascha MS, Kocharyan A, Gupta A, Murray GS, Megerian CA, Otteson TD. Sex-specific enlarged vestibular aqueduct morphology and audiometry. Am J Otolaryngol. 2019;40(4):473-7.
Callison DM, Horn KL. Large vestibular aqueduct syndrome: an overlooked etiology for progressive childhood hearing loss. J Am Acad Audiol. 1998;9(4):285-91.
Zalzal GH, Tomaski SM, Vezina LG, Bjornsti P, Grundfast K. Enlarged vestibular aqueduct and sensorineural hearing loss in childhood. Arch Otolaryngol Head Neck Surg. 1995;121(1):23-8. DOI: https://doi.org/10.1001/archotol.1995.01890010011003
Lei P, Leng Y, Li J, Zhou R, Liu B. Anatomical variation of inner ear may be a predisposing factor for unilateral Meniere’s disease rather than for ipsilateral delayed endolymphatic hydrops. Eur Radiol. 2022;32(5):3553-64. DOI: https://doi.org/10.1007/s00330-021-08430-7
Suri NM, Prasad AR, Sayani RK, Anand A, Jaychandran G. Cochlear implantation in children with Mondini dysplasia: our experience. J Laryngol Otol. 2021 ;135(2):125-9. DOI: https://doi.org/10.1017/S0022215121000372
Ascha MS, Manzoor N, Gupta A, Semaan M, Megerian C, Otteson TD. Vestibular aqueduct midpoint width and hearing loss in patients with an enlarged vestibular aqueduct. JAMA Otolaryngol Head Neck Surg. 2017;143(6):601-8. DOI: https://doi.org/10.1001/jamaoto.2016.4522
Nordström CK, Laurell G, Rask-Andersen H. The human vestibular aqueduct: anatomical characteristics and enlargement criteria. Otol Neurotol. 2016;37(10):1637-45. DOI: https://doi.org/10.1097/MAO.0000000000001203
Kaya S, Hızlı Ö, Kaya FK, Monsanto RD, Paparella MM, Cureoglu S. Peripheral vestibular pathology in Mondini dysplasia. Laryngoscope. 2017;127(1):206-9. DOI: https://doi.org/10.1002/lary.25995
Ciuman RR. Communication routes between intracranial spaces and inner ear: function, pathophysiologic importance and relations with inner ear diseases. Am J Otolaryngol. 2009;30(3):193-202. DOI: https://doi.org/10.1016/j.amjoto.2008.04.005
Clemis JD, Valvassori GE. Recent radiographic and clinical observations on the vestibular aqueduct:(a preliminary report). Otolaryngologic Clinics of North America. 1968;1(2):339-52. DOI: https://doi.org/10.1016/S0030-6665(20)33268-0
Swain SK. Meniere’s disease in the pediatric age group-a review. Int J Contemp Pediatr. 2022; 9(7): 693-7. DOI: https://doi.org/10.18203/2349-3291.ijcp20221616
Linthicum FH Jr, Doherty J, Webster P, Makarem A. The periductal channels of the endolymphatic duct, hydrodynamic implications. Otolaryngol Head Neck Surg. 2014;150(3): 441-7. DOI: https://doi.org/10.1177/0194599813516420
Alvarenga EHdL, Cruz OLM, Yamashita HK, de Lima EJ, Alvarenga AM, Bisinoto SMB. Systematization of vestibular aqueduct anatomical study by high-resolution computed tomography in patients with unilateral Meniere’s disease. Radiol Bras. 2006; 39(5):345-9. DOI: https://doi.org/10.1590/S0100-39842006000500009
Swain SK. Cochlear deformities and its implication in cochlear implantation: a review. Int J Res Med Sci. 2022;10(10):2339-45.
Nada A, Agunbiade SA, Whitehead MT, Cousins JP, Ahsan H, Mahdi E. Cross-sectional imaging evaluation of congenital temporal bone anomalies: what each radiologist should know. Curr Probl Diagn Radiol. 2021;50(5):716-24. DOI: https://doi.org/10.1067/j.cpradiol.2020.08.005
Joo HA, Lee DK, Lee YJ, Alrehaili BM, AlMutawah AA, Kang WS, et al. Anatomical features of children with Mondini dysplasia: influence on cochlear implantation performance. Otol Neurotol. 2023;44(6):379-86. DOI: https://doi.org/10.1097/MAO.0000000000003911
Swain SK. Audiovestibular manifestations during pregnancy: A review. Int J Res Med Sci. 2022;10(8):1809-14. DOI: https://doi.org/10.18203/2320-6012.ijrms20222001
Swain SK. Gene therapy for hearing loss: a review. Apollo Medicine. 2025;22(2):153-9. DOI: https://doi.org/10.1177/09760016241286276
Swain SK, Sahu MC, Baisakh MR. Early detection of hearing loss with connexin 26 gene assessment. Apollo Medicine. 2017;14(3):150-3.
Megarbane A, Chouery E, Rassi S, Delague V. A new autosomal recessive oto-facial syndrome with midline malformations. Am J Med Genet. 2005;132A(4):398-401. DOI: https://doi.org/10.1002/ajmg.a.30479
Gonzalez-Garcia J, Ibanez A, Ramirez Camacho R, Rodriguez A, Garcia Berrocal J, Trinidad A. Enlarged vestiubular aqueduct: looking for genotypic– phenotypic correlations. Eur Arch Otorhinolaryngol. 2006; 263(11):971-6. DOI: https://doi.org/10.1007/s00405-006-0095-x
Valvassori GE, Clemis JD. The large vestibular aqueduct syndrome. Laryngoscope. 1978;88(5):723-8. DOI: https://doi.org/10.1002/lary.1978.88.5.723
Boston M, Halsted M, Meinzen-Derr J, Bean J, Vijayasekaran S, Arjmand E, et al. The large vestibular aqueduct: a new definition based on audiologic and computed tomography correlation. Otolaryngol Head Neck Surg. 2007;136(6):972-7. DOI: https://doi.org/10.1016/j.otohns.2006.12.011
Wilson DF, Hodgson RS, Talbot JM. Endolymphatic sac obliteration for the large vestibular aqueduct syndrome. Am J Otol. 1997;18(1):101-6.
Berrettini S, Forli F, Bogazzi F, Neri E, Salvatori L, Casani AP, et al. Large vestibular aqueduct syndrome: audiological, radiological, clinical, and genetic features. Am J Otolaryngol. 2005;26(6):363-71.
Colvin IB, Beale T, Harrop-Griffiths K. Longterm follow-up of hearing loss in children and young adults with enlarged vestibular aqueducts: relationship to radiologic findings and Pendred syndrome diagnosis. Laryngoscope. 2006;116(11):2027-36. DOI: https://doi.org/10.1097/01.mlg.0000240908.88759.fe
Wu CC, Chen YS, Chen PJ, Hsu CJ. Common clinical features of children with enlargedvestibular aqueduct and Mondini dysplasia: Laryngoscope. 2005; 115 (1):132-7. DOI: https://doi.org/10.1097/01.mlg.0000150691.85387.3f
Hang G, Guan J, Xie H, Feng Y, Li X, Zhang M, et al. Anatomical significance of the vestibular aqueduct in posterior wall of the internal auditory canal drilling through the retrosigmoid approach: a study utilizing 3D reconstruction technology. Neurosurg Rev. 2025;48(1):309. DOI: https://doi.org/10.1007/s10143-025-03457-6
Arcand P, Desrosiers M, Dube J, Abela A. The large vestibular aqueduct syndrome and sensorineural hearing loss in the pediatric population. J Otol. 1991;20(4):247-50.
Ruthberg J, Ascha MS, Kocharyan A, Gupta A, Murray GS, Megerian CA, et al. Sex-specific enlarged vestibular aqueduct morphology and audiometry. Am J Otolaryngol. 2019;40(4):473-7. DOI: https://doi.org/10.1016/j.amjoto.2019.03.008
Zhou G, Gopen Q, Kenna M. Delineating the hearing loss in children with enlarged vestibular aqueduct. Laryngoscope. 2008; 118(11):2062-6. DOI: https://doi.org/10.1097/MLG.0b013e31818208ad
Gopen Q, Zhou G, Whittemore K, Kenna M. Enlarged vestibular aqueduct: review of controversial aspects. Laryngoscope. 2011;121(9):1971-8. DOI: https://doi.org/10.1002/lary.22083
Brotto D, Ariano M, Sozzi M, Cenedese R, Muraro E, Sorrentino F, et al. Vestibular anomalies and dysfunctions in children with inner ear malformations: A narrative review. Front Pediatr. 2023;11:1027045. DOI: https://doi.org/10.3389/fped.2023.1027045
Preciado DA, Lim LH, Cohen AP, Madden C, Myer D, Ngo C, et al. A diagnostic paradigm for childhood idiopathic sensorineural hearing loss. Otolaryngol Head Neck Surg. 2004;131(6):804-9. DOI: https://doi.org/10.1016/j.otohns.2004.06.707
Madden C, Halsted M, Benton C, Greinwald JH, Choo DI. Enlarged vestibular aqueduct syndrome in the pediatric population. Otol Neurotol. 2003;24(4):625-32. DOI: https://doi.org/10.1097/00129492-200307000-00016
Swain SK, Sahu MC, Choudhury J. Sudden sensorineural hearing loss in children: Our experiences in tertiary care teaching hospital of eastern India. Pediatria Polska-Polish Journal of Paediatrics. 2018;93(2):127-31. DOI: https://doi.org/10.5114/polp.2018.74773
Zhang SZ, Yang WY, Wu ZM. Relationship between the external aperture and hearing loss in large vestibular aqueduct syndrome. Chin Med J. 2006;119(3):211-6. DOI: https://doi.org/10.1097/00029330-200602010-00007
Pham N, Raslan O, Strong EB, Boone J, Dublin A, Chen S, et al. High-Resolution CT imaging of the temporal bone: a cadaveric specimen study. J Neurol Surg B: Skull Base. 2022;83(5):470-5. DOI: https://doi.org/10.1055/s-0041-1741006
Liu JX, Huang LH, Fu XX, Liu H, Yang YL, Cheng XH, et al. The audiological characteristics of large vestibular aqueduct syndrome in infants and young children. J Clin Otorhinolaryngol Head Neck Surg. 2016;30(21):1702-5.
Murray LN, Tanaka GJ, Cameron DS, Gianoli GJ. Coronal Computed Tomography of the Normal Vestibular Aqueduct in Children and Young Adults. Arch Otolaryngol Head Neck Surg. 2000;126(11):1351-7. DOI: https://doi.org/10.1001/archotol.126.11.1351
Berrettini S, Forli F, Bogazzi F, Neri E, Salvatori L, Casani AP, et al. Large vestibular aqueduct syndrome: audiological, radiological, clinical, and genetic features. Am J Otolaryngol. 2005;26(6):363-71. DOI: https://doi.org/10.1016/j.amjoto.2005.02.013
Swain SK. Single-Sided Deafness: A Narrative Review. Apollo Med. 2024 ;21(1):96-100. DOI: https://doi.org/10.1177/09760016241274412
Merchant SN, Nakajima HH, Halpin C, Nadol Jr JB, Lee DJ, Innis WP, et al. Clinical investigation and mechanism of air-bone gaps in large vestibular aqueduct syndrome. Ann Otol Rhinol Laryngol. 2007;116(7):532-41. DOI: https://doi.org/10.1177/000348940711600709
Rah YC, Kim AR, Koo JW, Lee JH, Oh SH, Choi BY. Audiologic presentation of enlargement of the vestibular aqueduct according to the SLC26A4 genotypes. Laryngoscope. 2015;125(6):216-22. DOI: https://doi.org/10.1002/lary.25079
Valvassori G, Naunton R, Lindsay J. Inner ear anomalies: clinical and histopathological considerations. Ann Otol Rhinol Laryngol. 1969;78(5):929-38. DOI: https://doi.org/10.1177/000348946907800502
Lo WW, Daniels DL, Chakeres DW, Linthicum Jr FH, Ulmer JL, Mark LP, et al. The endolymphatic duct and sac. AJNR: Am J Neuroradiol. 1997;18(5):881-7.
Eckhard AH, Zhu M, O’Malley JT, Williams GH, Loffing J, Rauch SD, et al. Inner Ear Pathologies Impair Sodium-Regulated Ion Transport in Meniere’s Disease. Acta Neuropathol. 2019;137(2):343-57. DOI: https://doi.org/10.1007/s00401-018-1927-7
Swain SK, Das A, Sahu MC, Das R. Neonatal hearing screening: Our experiences at a tertiary care teaching hospital of eastern India. Pediatria Polska. 2017;92(6):711-5.
Pakdaman MN, Herrmann BS, Curtin HD, Van Beek-King J, Lee DJ. Cochlear implantation in children with anomalous cochleovestibular anat omy: a systematic review. Otolaryngol Head Neck Surg. 2012;146(2):180-90. DOI: https://doi.org/10.1177/0194599811429244
Pritchett C, Zwolan T, Huq F, Phillips A, Parmar H, Ibrahim M, et al. Variations in the cochlear implant experience in children with enlarged vestibular aqueduct. The Laryngoscope. 2015;125(9):2169-74. DOI: https://doi.org/10.1002/lary.25187
Swain SK. Cochlear deformities and its implication in cochlear implantation: a review. Int J Res Med Sci. 2022;10(10):2339-45. DOI: https://doi.org/10.18203/2320-6012.ijrms20222547
Swain SK. Intracochlear electrode insertion of cochlear implant: a scoping review. Int J Otorhinolaryngol Head Neck Surg. 2025;11(3): 335-41. DOI: https://doi.org/10.18203/issn.2454-5929.ijohns20251527
Swain SK, Das A, Sahu MC, Das R. Neonatal hearing screening: Our experiences at a tertiary care teaching hospital of eastern India. Pediatria Polska. 2017;92(6):711-5. DOI: https://doi.org/10.1016/j.pepo.2017.08.002