The physiological and pathophysiological aspects of the human cochlea: a review

Authors

  • Manish Munjal Department of ENT-Head and Neck Surgery, Dayanand Medical College, Ludhiana, Punjab, India
  • Shubham Munjal Department of ENT-Head and Neck Surgery, Dayanand Medical College, Ludhiana, Punjab, India
  • Hardeep Kaur Department of ENT-Head and Neck Surgery, Dayanand Medical College, Ludhiana, Punjab, India
  • Vineeta Arora Guru Teg Bahadur Hospital, Ludhiana, Punjab, India
  • Aditi Randev Department of Medicine, Dayanand Medical College, Ludhiana, Punjab, India
  • Sakshi Jeriwal Department of ENT-Head and Neck Surgery, Dayanand Medical College, Ludhiana, Punjab, India
  • Prachi Bharadwaj Department of ENT-Head and Neck Surgery, Dayanand Medical College, Ludhiana, Punjab, India
  • Namit Mittal Department of ENT-Head and Neck Surgery, Dayanand Medical College, Ludhiana, Punjab, India
  • Navya Mittal Department of ENT-Head and Neck Surgery, Dayanand Medical College, Ludhiana, Punjab, India
  • Anjana Pillai Department of Dental Surgery, BJS Dental College, Ludhiana, Punjab, India

DOI:

https://doi.org/10.18203/issn.2454-5929.ijohns20252265

Keywords:

Cochlea, Physiology, Pathology, Pathophysiology

Abstract

The fluids of the membranous labyrinth are in a state of dynamic equilibrium with the intracranial cerebrospinal fluid. Mechanical shifts in the ear canal, middle and inner ear due to tympanic, ossicular, and basilar membrane displacements are likely to result in electrolyte alterations with the generation of nerve impulses. Sound wave, depending on its frequency, attains maximum amplitude at a particular site on the basilar membrane and stimulates that very segment. Higher frequencies are represented at the basal turn of the cochlea, and the progressively lower ones towards the apex. The disturbance in the milieu interior is consequent to auditory and vestibular impairments. Physiology of the cochlea is altered in varied conditions like hypertension, renal disease, syphilis, chronic suppurative otitis media, diabetes, and noise trauma. The unique physio-pathology of the membranous labyrinth shall be elaborated.

Metrics

Metrics Loading ...

References

Ahmed ZM, Goodyear R, Riazuddin S, Lagziel A, Legan PK, Behra M, et al. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J Neurosci. 2006;26(26):7022-34. DOI: https://doi.org/10.1523/JNEUROSCI.1163-06.2006

Miller JD, Rothenberg SJ, Eldredge DH. Preliminary observations on the effects of exposure to noise for seven days on the hearing and inner ear of the chinchilla. J Acoustical Soc Am. 1971;50(4B):1199-203. DOI: https://doi.org/10.1121/1.1912753

Peterson DC, Reddy V, Launico MV, Hamel RN. Neuroanatomy, Auditory Pathway. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2023.

Martin P. Active hair-bundle motility of the hair cells of vestibular and auditory organs. Inactive processes and Otoacoustic emissions in hearing. New York, NY: Springer New York. 2008;93-143. DOI: https://doi.org/10.1007/978-0-387-71469-1_4

Ashmore J. Outer Hair Cells and Electromotility. Cold Spring Harb Perspect Med. 2019;9(7):a033522. DOI: https://doi.org/10.1101/cshperspect.a033522

Dallos P. Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol. 2008;18(4):370-6. DOI: https://doi.org/10.1016/j.conb.2008.08.016

Kirbac A, Boke B. Effects of primary arterial hypertension on cochlear function. Acta Oto-Laryngologica. 2021;141(2):158-62. DOI: https://doi.org/10.1080/00016489.2020.1856923

Bergstrom L, Thompson P, Sando I, Wood RP. Renal disease: Its pathology, treatment, and effects on the ear. Arch Otolaryngol. 1980;106(9):567-72. DOI: https://doi.org/10.1001/archotol.1980.00790330047014

Hızlı Ö, Kaya S, Hızlı P, Paparella MM, Cureoglu S. Stria vascularis and cochlear hair cell changes in syphilis: A human temporal bone study. Auris Nasus Larynx. 2016;43(6):614-9. DOI: https://doi.org/10.1016/j.anl.2016.01.001

Cureoglu S, Schachern PA, Paparella MM, Lindgren BR. Cochlear changes in chronic otitis media. The Laryngoscope. 2004;114(4):622-6. DOI: https://doi.org/10.1097/00005537-200404000-00006

Le TN, Straatman LV, Lea J, Westerberg B. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol-Head Neck Surg. 2017;46(1):41. DOI: https://doi.org/10.1186/s40463-017-0219-x

Akinpelu OV, Mujica‐Mota M, Daniel SJ. Is type 2 diabetes mellitus associated with alterations in hearing? A systematic review and meta‐analysis. The Laryngoscope. 2014;124(3):767-76. DOI: https://doi.org/10.1002/lary.24354

Hao J, Hua L, Fu X, Zhang X, Zou Q, Li Y. Genome-wide DNA methylation analysis of human peripheral blood reveals susceptibility loci of diabetes-related hearing loss. J Hum Genet. 2018;63(12):1241-50. DOI: https://doi.org/10.1038/s10038-018-0507-y

Hou Y, Xiao X, Ren J, Wang Y, Zhao F. Auditory impairment in young type 1 diabetics. Arch Med Res. 2015;46(7):539-45. DOI: https://doi.org/10.1016/j.arcmed.2015.09.002

Cho WK, Kang WS, Lee JB, Park HJ, Chung JW, Ahn JH. Interpreting auditory brainstem evoked responses and distortion product otoacoustic emissions in diabetic patients with normal hearing. Auris Nasus Larynx. 2021;48(2):227-34. DOI: https://doi.org/10.1016/j.anl.2020.08.022

Spankovich C, Long GR, Hood LJ. Early indices of reduced cochlear function in young adults with type-1 diabetes revealed by DPOAE fine structure. J Am Acad Audiol. 2019;30(06):459-71. DOI: https://doi.org/10.3766/jaaa.17113

Botelho CT, Carvalho SA, Silva IN. Increased prevalence of early cochlear damage in young patients with type 1 diabetes detected by distortion product otoacoustic emissions. Int J Audiol. 2014;53(6):402-8. DOI: https://doi.org/10.3109/14992027.2013.879341

Nardo WD, Ghirlanda G, Paludetti G, Cercone S, Saponara C, Ninno MD, et al. Distortion-product otoacoustic emissions and selective sensorineural loss in IDDM. Diabetes Care. 1998;21(8):1317-21. DOI: https://doi.org/10.2337/diacare.21.8.1317

Lisowska G, Namysłowski G, Morawski K, Strojek K. Otoacoustic emissions and auditory brain stem responses in insulin dependent diabetic patients. Polish Otolaryngol. 2002;56(2):217-25.

Ottaviani F, Dozio N, Neglia CB, Riccio S, Scavini M. Absence of otoacoustic emissions in insulin-dependent diabetic patients: is there evidence for diabetic cochleopathy? J Diabetes Complic. 2002;16(5):338-43. DOI: https://doi.org/10.1016/S1056-8727(01)00224-0

Akcay G, Danısman B, Basaranlar G, Guzel P, Derin N, Derin AT. The effect of increase in blood glucose level on hearing loss. Braz J Otorhinolaryngol. 2022;88(Suppl 3):95-102. DOI: https://doi.org/10.1016/j.bjorl.2022.06.003

Gillihan N, Singh B, Jones W, Alexander M, Cader A. CSF Gusher Complication: Literature review on Cochlear Implants and Outcomes. Available at: https://digitalcommons.pcom.edu/cgi/viewcontent.cgi?article=2008&context=research_day. Accessed on 12 May 2025.

Ding D, Liu H, Qi W, Jiang H, Li Y, Wu X, et al. Ototoxic effects and mechanisms of loop diuretics. J Otol. 2016;11(4):145-56. DOI: https://doi.org/10.1016/j.joto.2016.10.001

Lim R, Brichta AM. Anatomical and physiological development of the human inner ear. Hear Res. 2016;338:9-21. DOI: https://doi.org/10.1016/j.heares.2016.02.004

Downloads

Published

2025-07-25

How to Cite

Munjal, M., Munjal, S., Kaur, H., Arora, V., Randev, A., Jeriwal, S., Bharadwaj, P., Mittal, N., Mittal, N., & Pillai, A. (2025). The physiological and pathophysiological aspects of the human cochlea: a review . International Journal of Otorhinolaryngology and Head and Neck Surgery, 11(4), 469–474. https://doi.org/10.18203/issn.2454-5929.ijohns20252265

Issue

Section

Review Articles