# **Systematic Review**

DOI: https://dx.doi.org/10.18203/issn.2454-5929.ijohns20221393

# Sex differences according to ethnic presentation in carotid body tumors: a systematic literature review

Kuauhyama Luna-Ortiz<sup>1\*</sup>, Nancy Reynoso-Noverón<sup>2</sup>, Cesar Herrera-Ponzanelli<sup>1</sup>, Saul Favila-Lira<sup>1</sup>, Zelik Luna-Peteuil<sup>3</sup>, Angel Herrera-Gomez<sup>4</sup>, Dorian Y. Gacia-Ortega<sup>4</sup>

Received: 01 April 2022 Revised: 29 April 2022 Accepted: 30 April 2022

#### \*Correspondence:

Dr. Kuauhyama Luna-Ortiz,

E-mail: kuauhyama@yahoo.com.mx

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **ABSTRACT**

Compare through a systematic literature review, the sex distribution of patients with carotid body tumors in Mexico and Latin America with the rest of the world. The eligibility criteria included retrospective cohort studies of more than 15 patients with a diagnosis of carotid body tumor (regardless of Shamblin's classification or clinical manifestations), which also reported the number of women and men affected, as well as their mean age. We divided the countries where the studies were conducted into regions (Latin America, USA, and Europe/Asia). The sex ratio difference between regions was calculated using a chi-square test. A p<0.05 was considered statistically significant. Thirty-eight studies met the eligibility criteria. Latin America had 1,345 cases, the United States had 808, and Europe/Asia had 672. Mexico had the most cases (1125), followed by the United States. The rest of the countries had less than 30 cases each. We found a statistically significant differences when we compared Latin American countries with the United States and Europe/Asia (p<0.001). However, the most significant difference was observed when we compared Mexico with the United States, Europe/Asia, and other Latin American countries. When comparing other Latin American countries with Europe/Asia, we found a statistical difference (p=0.01); however, there was no statistical difference (p=0.05) when we compared other Latin American countries with the United States. Mexico has the highest number of reported cases of carotid body tumors in the world. Women account for 90% of cases.

**Keywords**: Systematic review, Carotid body tumor, Carotid body paraganglioma, Head and neck paraganglioma, Paraganglioma

## INTRODUCTION

Paragangliomas can occur anywhere in the body; however, 65% of cases occur in the head and neck, where carotid body tumors are the most common type. The male-to-female ratio in non-Latin American countries is 1:1.9, but several papers have shown a greater difference (1:11) in Latin America, Some explanations and risk factors have been proposed: high-altitude cities, hormone receptors, hypoxia, and genetic differences. Our objective is to compare, through a systematic literature

review, the sex distribution of patients with carotid body tumors in Mexico and Latin America with rest of world.

#### LITERATURE REVIEW

A systematic literature review was conducted according to the Cochrane methodology and PRISMA (Preferred reporting items for systematic reviews and meta-analysis) guidelines. We queried specialized health databases, such as Medline, PubMed, Embase, ClinicalKey, and the Cochrane Library, using following terms: carotid body

<sup>&</sup>lt;sup>1</sup>Department of Head and Neck Surgery, <sup>2</sup>Research Statistical Department, Instituto Nacional de Cancerología, Mexico

<sup>&</sup>lt;sup>3</sup>Universitatea de Medicinâ si Farmacie Grigorie T. Popa IASI, Rumania

<sup>&</sup>lt;sup>4</sup>Department of Surgical Oncology, Instituto Nacional de Cancerología, Mexico

tumor, carotid body paraganglioma and head and neck paraganglioma. We reviewed 123 articles in June 2020. The eligibility criteria included retrospective cohort studies of more than 15 patients with a diagnosis of carotid body tumor (regardless of Shamblin's classification or clinical manifestations), which showed number of women and men affected and their mean age.

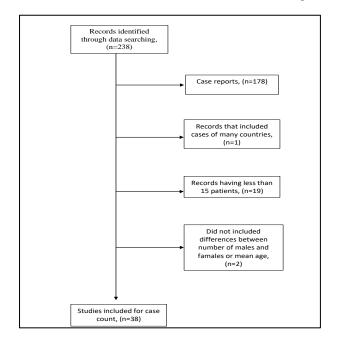



Figure 1: Literature search results using keywords in healthcare databases.

After full-text review, 38 articles written in English/ Spanish met the inclusion criteria. We excluded articles with less than 15 patients/case reports and no information on sex distribution or mean age. Multi-center studies involving different countries also excluded to provide data by regions instead of multi-national contributions, which could have confused purpose of our review. If a single institution had published several articles, we selected articles with more patients (Figure 1).

We obtained the total population diagnosed with carotid body tumors, as well as their age and sex. We divided the countries where the studies were conducted into regions (Latin America, USA, and Europe/ Asia). The sex ratio difference between regions was calculated using a chi-square test. P<0.05 considered statistically significant. Analyses were performed using Stata version 14.

#### **RESULTS**

Out of 38 studies, Mexico had the most cases (1125), followed by the United States (808). The rest of the countries had less than 30 cases each. Some countries occasionally showed slightly higher figures, as shown in Table 1.1-4,6,8-39 To compare them, we classified countries by regions: Latin America (1,345 cases), the United States (808), and Europe/ Asia (672). Moreover, comparisons were made using sex and age at presentation. Age at presentation did not show a statistical difference between populations (Table 1). We found a statistical difference when comparing Latin American countries with the United States and Europe/ Asia (p<0.001). Most significant difference was observed when we compared Mexico with the United States, Europe/ Asia and other Latin American countries. There also a statistical difference between other Latin American countries and Europe/ Asia (p=0.01). However, no statistical difference observed between other Latin American countries and US (p=0.05) (Table 2).

Table 1: Cases by region.

| Authors                         | Regions  | Female, N (%)   | Male, N (%)                     | Age (years) (Mean) |
|---------------------------------|----------|-----------------|---------------------------------|--------------------|
| Latin America                   | Regions  | Female, IV (70) | 1 <b>viaic,</b> 1 <b>v</b> (70) | Age (years) (Mean) |
| Bizueto Rosas <sup>4</sup>      | Mexico   | 887 (92)        | 77 (8)                          | 55                 |
| Enríquez Vega <sup>6</sup>      | Mexico   | 23 (92)         | 2 (8)                           | 55.1               |
| Gutiérrez-Carreño <sup>18</sup> | Mexico   | 44 (77)         | 13 (23)                         | 52                 |
| Rodríguez-Cuevas <sup>2</sup>   | Mexico   | 107 (89)        | 13 (11)                         | 49                 |
| Luna-Ortiz <sup>3</sup>         | Mexico   | 64 (97)         | 2 (3)                           | 50.2               |
| Lechter <sup>10</sup>           | Colombia | 16 (69)         | 7 (31)                          | 59.5               |
| Casarim <sup>16</sup>           | Brazil   | 14 (63)         | 8 (37)                          | 43                 |
| Silva <sup>36</sup>             | Ecuador  | 20 (73)         | 6 (27)                          | 57                 |
| Pacheco-Ojeda <sup>33</sup>     | Ecuador  | 14 (74)         | 5 (26)                          | 52.5               |
| Saldaña <sup>35</sup>           | Peru     | 20 (87)         | 3 (13)                          | 31                 |
| Total                           | 1345     | 1209 (90)       | 136 (10)                        | 45.2               |
| USA                             |          |                 |                                 |                    |
| Hushang <sup>24</sup>           | USA      | 15 (62)         | 9 (38)                          | 46                 |
| Douglas <sup>29</sup>           | USA      | 21 (51)         | 18 (49)                         | 49                 |
| Neterville <sup>32</sup>        | USA      | 17 (65)         | 13 (35)                         | 42                 |
| Kraus <sup>25</sup>             | USA      | 11 (73)         | 4 (27)                          | 45                 |
| Williams <sup>39</sup>          | USA      | 20 (67)         | 10 (33)                         | 54                 |
| Anderson <sup>12</sup>          | USA      | 8 (53)          | 7 (47)                          | Not reported       |
| Bishop <sup>14</sup>            | USA      | 17 (61)         | 11 (39)                         | 47                 |

Continued.

| Authors                  | Regions      | Female, N (%) | Male, N (%) | Age (years) (Mean) |
|--------------------------|--------------|---------------|-------------|--------------------|
| LaMuraglia <sup>28</sup> | USA          | 12 (70)       | 5 (30)      | 44                 |
| Anand <sup>41</sup>      | USA          | 11 (60)       | 7 (40)      | 39                 |
| Patetsios <sup>19</sup>  | USA          | 19 (65.5)     | 10 (34.5)   | 43                 |
| Lack <sup>26</sup>       | USA          | 22 (52)       | 21 (48)     | 46                 |
| Cobb <sup>15</sup>       | USA          | 350 (64)      | 170 (36)    | 54                 |
| Total                    | 808          | 523 (65)      | 285 (35)    | 46.2               |
| Europe/Asia              |              |               |             |                    |
| Paridaans <sup>22</sup>  | Netherlands  | 23 (56)       | 18 (44)     | 38                 |
| Atefi <sup>13</sup>      | UK           | 19 (68.5)     | 6 (31.5)    | 54                 |
| Sajid <sup>31</sup>      | UK           | 63 (66)       | 32 (34)     | 55                 |
| Papaspyrou <sup>34</sup> | Germany      | 81 (67.5)     | 39 (32.5)   | 42                 |
| Lamblin <sup>27</sup>    | France       | 27 (55)       | 22 (45)     | 54                 |
| Muhm <sup>30</sup>       | Austria      | 14 (58)       | 10 (42)     | 51                 |
| Fruhmann <sup>17</sup>   | Austria      | 33 (66)       | 17 (34)     | 54.5               |
| Dorobisz <sup>40</sup>   | Poland       | 19 (40)       | 28 (60)     | 45                 |
| Boscarino <sup>21</sup>  | Italy        | 14 (80)       | 6 (20)      | 55                 |
| Amato <sup>11</sup>      | Italy        | 19 (56)       | 12 (44)     | 48                 |
| Dematte <sup>1</sup>     | Italy        | 26 (65)       | 14 (35)     | 52                 |
| Inan <sup>23</sup>       | Turkey       | 13 (65)       | 7 (35)      | 45.65              |
| Y. Ünlü <sup>38</sup>    | Turkey       | 23 (82)       | 5 (18)      | 50.6               |
| D.Sanghvi <sup>37</sup>  | India        | 6 (30)        | 14 (70)     | 38                 |
| Al-Harthy <sup>9</sup>   | Saudi Arabia | 27 (59)       | 19 (41)     | 43                 |
| Gwon <sup>20</sup>       | South Korea  | 11 (69)       | 5 (31)      | 41.7               |
| Total                    | 672          | 418 (62)      | 254 (38)    | 47.9               |

Table 2: Comparative analysis between regions.

| Regions                                        | N (%)      | Females, N (%) | Males, N (%) | Chi², p |
|------------------------------------------------|------------|----------------|--------------|---------|
| Latin America vs USA                           | 1385 (100) | 1247 (90)      | 138 (10)     | < 0.001 |
| Latin America vs USA                           | 808 (100)  | 523 (65)       | 285 (35)     |         |
| Latin America vs Europe/ Asia                  | 1385 (100) | 1247 (90)      | 138 (10)     | < 0.001 |
| Laun America vs Europe/ Asia                   | 672 (100)  | 418 (62)       | 254 (38)     |         |
| Mexico vs other Latin American countries       | 1232 (100) | 1125 (90)      | 107 (10)     | < 0.001 |
| Mexico vs other Latin American countries       | 113 (100)  | 84 (74)        | 29 (26)      |         |
| Mexico vs USA                                  | 1232 (100) | 1125 (90)      | 107 (10)     | < 0.001 |
| Mexico vs USA                                  | 808 (100)  | 523 (65)       | 285 (35)     |         |
| Mexico vs Europe/ Asia                         | 1232 (100) | 1125 (90)      | 107 (10)     | < 0.001 |
| Mexico vs Europe/ Asia                         | 672 (100)  | 418 (62)       | 254 (38)     |         |
| Other Letin American countries vs Europe/ Asia | 113 (100)  | 84 (74)        | 29 (26)      | 0.01    |
| Other Latin American countries vs Europe/ Asia | 672 (100)  | 418 (62)       | 254 (38)     |         |
| Other Latin American countries vs USA          | 113 (100)  | 84 (74)        | 29 (26)      | 0.05    |
| Other Laun American countries vs USA           | 808 (100)  | 523 (65)       | 285 (35)     |         |
| Engano/ Agio va UCA                            | 672 (100)  | 418 (62)       | 254 (38)     | 0.3     |
| Europe/ Asia vs USA                            | 808 (100)  | 523 (65)       | 285 (35)     |         |

### **DISCUSSION**

Paragangliomas are extra-adrenal tumors originating from the neuroectoderm. They can occur anywhere in the body; however, more than 50% are found in the head and neck region, and they account for 0.03% of all human tumors. In 1943 Haller described that their main function was related to blood pressure and oxygen receptors. Hence, chronic hypoxia induced hypertrophy, which resulted in sporadic (non-hereditary) tumor growth. Thus, cities located at over 1500 m above sea level had a higher prevalence. Rodríguez-Cuevas et al stated, without evidence, that chronic hypoxia and erythrocyte loss

during menstruation caused carotid body tumors to develop more often in Mexican women.<sup>2</sup> After finding that patients had normal hemoglobin levels, Luna-Ortiz et al indicated a genetic factor.<sup>3</sup> It is now known that more than 30% of paragangliomas are related to germline mutations associated with the mitochondrial succinate dehydrogenase complex (SDHD, SDHB, SDHC, or SDHAF2). Patients with any of these mutations should be closely monitored during neck, chest, abdominal, or pelvic MRI scans, and their family should be screened too.<sup>6</sup> In a mutation study of 25 Mexican patients living at 2,200 m above sea level, 92% were women, 8% had a family history, bilateral tumors of 20% and 16% with a

tumor in other regions. The p81L SDHD (11q23) gene mutation was found; 16% of patients were heterozygous, twice as much as what has been reported in the United States.<sup>5,40,41</sup> This could explain to some extent why there is a larger number of cases in women.<sup>3</sup>

As mentioned in the literature, carotid body tumors are generally benign, and seldom pose an imminent risk of death. Malignant tumors occur in non-neuroendocrine tissues, such as lymph nodes, liver, bone, kidneys, lungs, breasts, pancreas, retroperitoneum, and thyroid gland.<sup>3,13,42</sup> However, there are no reported series of patients with carotid body tumors to identify genetic differences.

Based on our findings, we observed a higher incidence in Latin American women (p<0.001). Mexico and, to a lesser extent, Peru show a significantly higher incidence compared with the rest of the world (p<0.001). The difference was also observed when we compared Mexico with other Latin American countries, which demonstrates that carotid body tumors are more common in Mexico. The populations of other Latin American countries and the United States showed a similar pattern; thus, we consider there could be a population bias because many Latinos live in the United States. The American series could have included Latino patients. In that case, such series could be similar to those of other Latin American countries, which would be an instance of the Will Rogers phenomenon.<sup>43</sup> Finally, we did not find differences between the United States and Europe/Asia. Genetic studies are warranted to determine if it is a racial phenomenon.

#### **CONCLUSION**

Mexico has the highest number of reported cases of carotid body tumors in the world. Women account for 90% of cases. Peru shows similar numbers. Contrary to the rest of the world, carotid body tumors are more common in Mexican women than men. The incidence is higher in Latin American countries, compared with the United States and Europe/Asia. If we exclude Mexico from the Latin American countries, their sex difference is similar to that reported in the United States, whose large Latino population may create a bias. The United States and Europe/Asia behave similarly, and the incidence is almost the same between men and women.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

#### REFERENCES

- Demattè S, Di Sarra D, Schiavi F, Casadei A, Opocher G. Role of ultrasound and color Doppler imaging in the detection of carotid paragangliomas. J Ultrasound. 2012;15(3):158-63.
- 2. Rodríguez-Cuevas S, López-Garza J, Labastida-

- Almendaro S. Carotid body tumors in inhabitants of altitudes higher than 2000 meters above sea level. Head Neck. 1998;20(5):374-8.
- Luna-Ortiz K, Rascon-Ortiz M, Villavicencio-Valencia V, Granados-Garcia M, Herrera-Gomez A. Carotid body tumors: Review of a 20-year experience. Oral Oncol. 2005;41(1):56-61.
- 4. Bizueto-Rosas H, Gutiérrez-Vogel S, Hernández-Salgado R, López-Silva J, Enríquez-Vega ME, Cossío-Zazueta A et al. Carotid Paraganglioma. Experience of a Reference Center, UMAE Hospital De Especialidades Del Centro Médico Nacional "La Raza", 964 Cases in 32 Years. J Surg Open Access. 2020;6(3).
- Elizabeth Enríquez-Vega M, Gabriela Muñoz-Paredes J, Cossío-Zazueta A, Ontiveros-Carlos Y, Pacheco-Pittaluga E, Bizueto-Rosas H. Mutación del gen SDHD en población mexicana con tumor del cuerpo carotídeo SDHD gene mutation in Mexican population whit carotid body tumor. Cir Cir. 2018;86(1):38-42.
- 6. Fruhmann J, Geigl JB, Konstantiniuk P, Cohnert TU. Paraganglioma of the carotid body: Treatment strategy and SDH-gene mutations. Eur J Vasc Endovasc Surg. 2013;45(5):431-6.
- Kudryavtseva AV, Lukyanova EN, Kalinin DV, Zaretsky AR, Pokrovsky AV, Golovyuk AL et al. Mutational load in carotid body tumor. BMC Med Genomics. 2019;12(2).
- 8. Atefi S, Nikeghbalian S, Yarmohammadi H, Assadi-Sabet A. Surgical management of carotid body tumours: A 24-year surgical experience. ANZ J Surg. 2006;76:214-7.
- 9. Bishop GB, Urist MM, Gammal T El, Peters GE, Maddox WA. Paragangliomas of the Neck. Arch Surg. 1992;127(12):1441-5.
- Cobb AN, Barkat A, Daungjaiboon W, Halandras P, Crisostomo P, Kuo PC et al. Carotid Body Tumor Resection: Just as Safe without Preoperative Embolization. Ann Vasc Surg. 2018;46:54-9.
- 11. Casarim ALM, Tincani AJ, Del Negro A, Aguiar CG, Fanni RV, Martins AS. Tumor de corpo carotídeo: Análise retrospectiva de 22 pacientes. Sao Paulo Med J. 2014;132(3):133-9.
- Rafael Gutiérrez-Carreño A, Sánchez-Fabela C, Gutiérrez-Carreño AB, Patricia Portillo-Fernández D, Lizola-Margolis RI, Mónica Mendieta-Hernández D. Paraganglioma carotídeo. Actualidades 2012. Experiencia de 35 años. Revista Mexicana de angiologia. 2012;40.
- 13. Patetsios P, Gable DR, Garrett W V, Lamont JP, Kuhn JA, Shutze WP et al. Management of carotid body paragangliomas and review of a 30-year experience. Ann Vasc Surg. 2002;16(3):331-8.
- 14. Gwon JG, Kwon TW, Kim H, Cho YP. Risk factors for stroke during surgery for carotid body tumors. World J Surg. 2011;35(9):2154-8.
- 15. Boscarino G, Parente E, Minelli F, Ferrante A, Snider F. An evaluation on management of carotid body tumour (CBT). A twelve years experience. G di

- Chir. 2014;35(1-2):47-51.
- 16. Paridaans MPM, Van Der Bogt KEA, Jansen JC, Nyns ECA, Wolterbeek R, Van Baalen JM et al. Results from craniocaudal carotid body tumor resection: Should it be the standard surgical approach? Eur J Vasc Endovasc Surg. 2013;46(6):624-9.
- Inan HC, Yener HM, Karaman E, Kizilkiliç O, Cansiz H, Eker Ç. Role of preoperative embolization in surgical treatment of the carotid body paragangliomas. J Craniofac Surg. 2019;30(3):E267-70.
- 18. Javid H, Chawla SK, Dye WS, Hunter JA, Najafi H, Goldin MD et al. Carotid Body Tumor: Resection or Reflection. Arch Surg. 1976;111(4):344-7.
- 19. Kraus DH, Sterman BM, Hakaim AG, Beven EG, Levine HL, Wood BG. Carotid Body Tumors. Arch Otolaryngol Neck Surg. 1990;116(12):1384-7.
- Lack EE, Cubilla AL, Woodruff JM, Farr HW. Paragangliomas of the head and neck region. A clinical study of 69 patients. Cancer. 1977;39(2):397-409.
- Lamblin E, Atallah I, Reyt E, Schmerber S, Magne JL, Righini CA. Neurovascular complications following carotid body paraganglioma resection. Eur Ann Otorhinolaryngol Head Neck Dis. 2016;133(5):319-24.
- 22. O[apos ]Donnell TF, LaMuraglia GM, Fabian RL, Brewster DC, Pile-Spellman JC, Darling RC et al. The current surgical management of carotid body paragangliomas. J Vasc Surg. 1992;15(6):1038-45.
- 23. Lees CD, Levine HL, Beven EG, Tucker HM. Tumors of the carotid body. Experience with 41 operative cases. Am J Surg. 1981;142(3):362-5.
- 24. Muhm M, Polterauer P, Gstöttner W, Temmel A, Richling B, Undt G et al. Diagnostic and therapeutic approaches to carotid body tumors: Review of 24 patients. Arch Surg. 1997;132(3):279-84.
- 25. Sajid MS, Hamilton G, Baker DM, on behalf of Joint Vascular Research Group. A Multicenter Review of Carotid Body Tumour Management. Eur J Vasc Endovasc Surg; 2007;34:127-30.
- Netterville JL, Reilly KM, Robertson D, Reiber ME, Armstrong WB, Childs P. Carotid body tumors: A review of 30 patients with 46 tumors. Laryngoscope. 1995;105(2):115-26.
- 27. Pacheco-Ojeda L, Durango E, Rodriquez C, Vivar N. Carotid body tumors at high altitudes: Quito, Ecuador, 1987. World J Surg. 1988;12(6):856-9.
- 28. Papaspyrou K, Mann WJ, Amedee RG. Management of head and neck paragangliomas: Review of 120 patients. Head Neck. 2009;31(3):381-7.
- 29. Saldana MJ, Salem LE, Travezan R. High altitude hypoxia and chemodectomas. Hum Pathol. 1973;4(2):251-63.

- 30. Silva A, Tapia R. Paraganglioma de cuerpo carotideo. Rev la Fac Ciencias Médicas. 2017;42(2):134-9.
- 31. Sanghvi VD, Chandawarkar RY. Carotid body tumors. J Surg Oncol. 1993;54(3):190-2.
- 32. Ünlü Y, Becit N, Ceviz M, Koçak H. Management of Carotid Body Tumors and Familial Paragangliomas: Review of 30 Years' Experience. Ann Vasc Surg. 2009;23(5):616-20.
- 33. Williams MD, Phillips MJ, Nelson WR, Rainer WG. Carotid Body Tumor. Arch Surg. 1992;127(8):963-8.
- 34. Dorobisz K, Dorobisz T, Temporale H, Zatoński T, Kubacka M, Chabowski M et al. Diagnostic and therapeutic difficulties in carotid body paragangliomas, based on clinical experience and a review of the literature. Adv Clin Exp Med. 2016;25(6):1173-7.
- 35. Anand VK, Alemar GO, Sanders TS. Management of the internal carotid artery during carotid body tumor surgery. Laryngoscope. 1995;105(3):231-5.
- 36. Al-Harthy M, Al-Harthy S, Al-Otieschan A, Velagapudi S, Alzahrani AS. Comparison of pheochromocytomas and abdominal and pelvic paragangliomas with head and neck paragangliomas. Endocr Pract. 2009;15(3):194-202.
- 37. Lechter A, Naar JD, Andrade O. Paragangliomas del cuerpo carotídeo. Rev colomb cir. 1992;86-9.
- 38. Amato B, Bianco T, Compagna R, Siano M, Esposito G, Buffone G et al. Surgical resection of carotid body paragangliomas: 10 years of experience. Am J Surg. 2014;207(2):293-8.
- 39. Anderson R, Scarcella JV. Carotid body tumors. Am J Surg. 1963;106(5):856-9.
- 40. Baysal BE. Hereditary paraganglioma targets diverse paraganglia. J Med Genetics. 2002;39:617-22.
- 41. Mhatre AN, Li Y, Feng L, Gasperin A, Lalwani AK. SDHB, SDHC, and SDHD mutation screen in sporadic and familial head and neck paragangliomas. Clin Genet. 2004;66(5):461-6.
- 42. Lee JH, Barich F, Karnell LH, Robinson RA, Zhen WK, Gantz BJ et al. National cancer data base report on malignant paragangliomas of the head and neck. Cancer. 2002;94(3):730-7.
- 43. Feinstein AR, Sosin DM, Wells CK. The Will Rogers Phenomenon. N Engl J Med. 1985;312(25):1604-8.

Cite this article as: Luna-Ortiz K, Reynoso-Noverón N, Herrera-Ponzanelli C, Favila-Lira S, Luna-Peteuil Z, Herrera-Gomez A, et al. Sex differences according to ethnic presentation in carotid body tumors: a systematic literature review. Int J Otorhinolaryngol Head Neck Surg 2022;8:527-31.