pISSN 2454-5929 | eISSN 2454-5937

Original Research Article

DOI: http://dx.doi.org/10.18203/issn.2454-5929.ijohns20204187

Association of hearing loss and lead exposure in a North Indian tertiary hospital: a pilot study

Anuja Bhargava¹, Syed M. Faiz^{1*}, Tabrez Jafar², Saloni Singh¹, Deepika Goswami¹, Harsha Singh¹

¹Department of ENT, ²Department of Molecular Biochemistry, Era's Lucknow Medical College &Hospital (Era's University), Lucknow, Uttar Pradesh, India

Received: 22 July 2020 Revised: 12 September 2020 Accepted: 15 September 2020

*Correspondence: Dr. Syed M. Faiz,

E-mail: faz_georgian@rediffmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Lead poisoning is one of the most common metal poisonings. Lead is present in many man-made structures, work environments and various products. It has been consistently shown that low as well as high exposure levels to heavy metals have an adverse effect on human health, leading to conditions such as cardiovascular and pulmonary dysfunctions.

Methods: A total of 25 patients (50 ears) presented with hearing loss were included in the study on the basis of inclusion and exclusion criterion. All the patients were subjected to pure tone audiometry and blood lead levels followed by data analysis. Statistical analysis was used and data was analysed using Statistical package for social sciences (SPSS) 21.0 software. Chi-square test and ANOVA were used to compare the data. P value less than 0.05 was considered as significant.

Results: Age group of patients included in study was 5-50 years with female predominance. Blood lead levels were independent of sex and age of patient, however statistical association was noted with pure tone audiometry (hearing loss).

Conclusions: As positive correlation was observed between lead levels and hearing loss, we emphasize on the fact that further studies on a larger sample size including a control arm should be planned.

Keywords: Lead toxicity, Hearing loss, Serum lead levels

INTRODUCTION

Lead poisoning is one of the most common metal poisonings. Lead is present in many man-made structures, work environments and various products. It has been consistently shown that low as well as high exposure levels to heavy metals have an adverse effect on human health, leading to conditions such as cardiovascular and pulmonary dysfunctions. ^{2,3} In addition, some studies have shown an association between exposure to heavy metals and hearing disorders in animals. ^{4,5}

Wu et al showed that lead toxicity had an adverse impact on the peripheral fibers of the auditory nerve. In addition, abnormalities in auditory brainstem response (ABR) latencies induced by lead exposure have been shown to occur in rhesus monkeys. A recent report has linked Beethoven's progressive hearing loss to axonal degeneration due to a continuous exposure to lead. Occupational lead exposure is often originated in work environments such as steel plants, glass factories. And other industries using lead-based products or processes. In Non-occupational lead exposure is often caused by the use of gasoline with lead additives,

incineration of lead-containing waste, lead-based paints used in homes, ceramic glazes containing lead, electronic waste, other industrial lead-based product factories, lead-containing water networks and contaminated food chains. ¹⁶⁻²⁹ Other symptoms of lead poisoning are anemia, abnormal behavior, irritability, and difficulty in concentration. Abdominal colic, paroxysms of pain, encephalopathy, delirium, coma, seizures and headache. In today's world patient of younger age group presenting with hearing loss with no other identifiable cause but there was exposure to lead either due to occupational hazard or environmental exposure. Thus, the study aims to establish a relationship between hearing loss and lead exposure.

METHODS

Prospective study was conducted in the Department of Otorhinolaryngology and Department of Personalized and Molecular Medicine to correlate Association of Hearing loss and lead exposure in a North Indian tertiary hospital, after obtaining clearance from the institutional ethical committee. Study was conducted from June 2019 to August 2019. Written informed consent was taken from all the enrolled subjects.

Aim

The aim of the study was to establish a relationship between hearing loss and lead exposure.

Objective

The main objective of the study was to correlate pure tone audiometry findings with serum lead levels in patients with hearing loss.

Inclusion criteria

The study subjects were selected if they fulfilled following mentioned inclusion criteria: patients aged 5-50 years, having history of occupational or non-occupational lead exposure, patients with sensorineural hearing loss (SNHL) on a screening audiogram (PTA).

Exclusion criteria

The study subjects were excluded based on the following criteria: patients who gave history of exposure to loud sound, history of intake of ototoxic drugs (aminoglycosides, quinines), diabetic patients, history of middle ear pathology, non -cooperative and unconscious patients, patients with end-stage kidney/liver or cardiac diseases and patients with history of stroke (Cerebrovascular accident) or hypertension or known neurological disorder.

Methodology

The present prospective study was conducted on 25 patients (50 ears) in the Department of

Otorhinolaryngology, and Department of Personalized and Molecular Medicine to correlate Association of Hearing loss and lead toxicity in a North Indian tertiary hospital, after obtaining clearance from the institutional ethical committee. The study was conducted from June 2019 to August 2019.

Sampling technique

Randomization was done by computer software. Patients were included according to inclusion and exclusion criteria. Complete ENT examination was done including: all the patients with sensorineural hearing loss on PTA, their blood samples were collected and were evaluated for lead levels. Blood lead level estimation was done. A Lead care II (Meridian Bioscience, Cincinnati, OH, USA) analyzer using an electrochemical technique called anodic stripping voltammetry 15 was used to determine the amount of lead in the blood samples. The Lead care II system relies on electrochemistry and has a unique sensor to detect lead (detectable range 3.2-60 µg/dl) in whole blood. When whole blood is mixed with the treatment reagent, the red blood cells are lysed, and the lead is made available for detection. When a test is run, the analyzer applies a potential that causes the lead to collect on the Lead care II sensor. After three minutes, the analyzer measures the amount of lead collected on the sensor and display the result in µg/dl.³⁰

Categorization of serum lead levels were done³⁰

 $<3.3 \,\mu g/dl$ - Safe

3.3-10 µg/dl - Moderate exposure

>10 µg/dl - Heavy exposure

Data analysis

Data was analyzed using Statistical package for social sciences (SPSS) 21.0 software. Chi-square test and ANOVA were used to compare the data. P value less than 0.05 was considered as significant.

RESULTS

Patients included in the study were in the age group of 5 years to 50 years and the mean age of patients in study was 40.08 ± 13.84 years (Figure 1). Out of 25 patients, majority of the patients were female (17/25) accounting for (68%) (Figure 2). Patients were categorized according to the lead levels as serum lead levels of: <3.3 µg/dl, between 3.3-10 µg/dl and >10 µg/dl respectively.

Patients who had lead levels <3.3 μ g/dl were 8, lead levels between 3.3-10 μ g/dl were 15 and lead levels >10 μ g/dl were 2 (Figure 3).

Variable	Lead Levels			Statistical
	<3.3 g/dl (n=8)	3.3-10 g/dl (n=15)	>10 g/dl (n=2)	significance
Mean Age±SD	46.13±7.74	36.73±15.94	41.00±12.73	F=1.228; p=0.312
Sex	•	•		
Male	6 (75.0%)	9 (60.0%)	2 (100%)	X ² =1.563; p=0.458
Female	2 (25.0%)	6 (40.0%)	0	
	(n=16)	(n=30)	(n=4)	
Mean AC±SD	42.94±6.88	38.33±6.61	47.50±8.66	F=4.607; p=0.015
Mean BC±SD	40.00±4.02	36.13±7.22	45.25±3.11	F=4.991 p=0.011

Table 1: Association between Lead Levels and Clinicodemographic profile of patients.

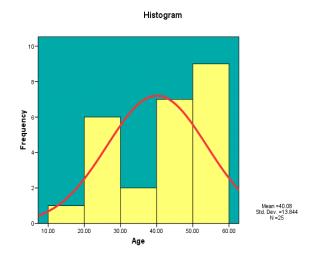


Figure 1: Age profile.

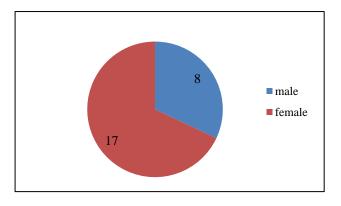


Figure 2: Gender profile.

Mean air conduction for patients with lead levels <3.3 $\mu g/dl, 3.3\text{-}10~\mu g/dl$ and >10 $\mu g/dl$ were 42.94±6.88, 38.33±6.61 and 47.50±8.66 respectively which was found to be statistically significant (p<0.05) (table 1). Mean bone conduction for patients with lead levels <3.3 $\mu g/dl, 3.3\text{-}10~\mu g/dl$ and >10 $\mu g/dl$ were 40.00±4.02, 36.13±7.22 and 45.25±3.11 respectively which was also found to be statistically significant (Table 1). Bone conduction was found to be more statistically significant than air conduction.

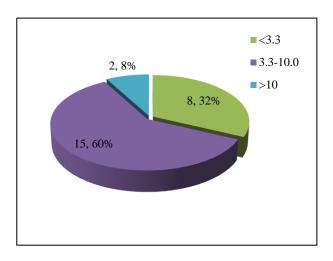


Figure 3: Serum lead levels.

DISCUSSION

The proportion of young patients with unexplained hearing loss having serum lead levels above >3.5 μ g/dl was 68%. Shargorodsky et al reported, in a study, that high-frequency hearing impairment was seen in a group with a blood lead level above 2 μ g/dl as compared to a reference group. In present study, air and bone conduction frequencies of patients with high lead exposure were found to be of higher order, and the association was statistically significant too for air and bone conduction frequency. Thus, indicating a possible relationship between lead exposure and hearing loss.

These findings are in agreement with the observations of Ghiasvand et al who in a population of occupational lead exposure found a significant association between level of lead exposure and pure tone audiometry results.³² Kang et al in a recent study based on Korean National Health and Nutritional Examination Survey results also found that even exposure to low-level lead is a risk factor for high-frequency hearing loss.³³

The findings of present study thus show that lead exposure could be a possible reason for hearing loss in young patients having no other plausible cause.

CONCLUSION

60 percent of the patients (31-50 years) who presented with high frequency of hearing loss had serum levels above $>3.3 \mu/dl$. No significant association of level of lead exposure could be seen with age or gender of the patients. The pure tone audiometry for air conduction and bone conduction frequencies were of higher order among patients with higher levels of lead exposure and the association was statistically significant for air and bone conduction frequency. The findings of our study suggest that hearing loss in individuals at risk of environmental or occupational exposure could be owing to their exposure to lead above safety levels. On the basis of findings of present study, it could be recommended that individuals at risk of environmental or occupational lead exposure should be regularly monitored for hearing impairment and efforts should be made to reduce their risk exposure.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- 1. Needleman H. Lead poisoning. Annu Rev Med. 2004;55:209-22.
- 2. Hu H. Human health and heavy metals. Life Support: The Environment and Human Health; MIT Press: Cambridge, MA, USA. 2002;65.
- Agarwal S, Zaman T, Tuzcu ME, Kapadia SR. Heavy metals and cardiovascular disease: results from the National Health and Nutrition Examination Survey (NHANES) 1999-2006. Angiology. 2011;62(5):422-9
- 4. Apostoli P, Catalani S, Zaghini A, Mariotti A, Poliani PL, Vielmi V et al. High doses of cobalt induce optic and auditory neuropathy. Experimental and toxicologic pathology. 2013;65(6):719-27.
- 5. Lilienthal H, Winneke G. Lead effects on the brain stem auditory evoked potential in monkeys during and after the treatment phase. Neurotoxicology and teratology. 1996;18(1):17-32.
- 6. Xue-wen W, Da-lian D, Hong S, Hong L, Hai-yan J, Salvi R. Lead neurotoxicity in rat cochlear organotypic cultures. Journal of otology. 2011;6(2):43-50.
- Lasky RE, Maier MM, Snodgrass EB, Hecox KE, Laughlin NK. The effects of lead on otoacoustic emissions and auditory evoked potentials in monkeys. Neurotoxicology and teratology. 1995;17(6):633-44.
- 8. Stevens MH, Jacobsen T, Crofts AK. Lead and the deafness of Ludwig van Beethoven. The Laryngoscope. 2013;123(11):2854-8.
- 9. Pervez S, Pandey GS. Toxic metals status in kidneys and gallstones of workers in a steel plant environment. Environmental monitoring and assessment. 1994;32(2):93-9.

- Horng CJ. Simultaneous determination of urinary zinc, cadmium, lead and copper concentrations in steel production workers by differential-pulse anodic stripping voltammetry. Analyst. 1996;121(10):1511-4.
- 11. Hwang YH, Chiang HY, Yen-Jean MC, Wang JD. The association between low levels of lead in blood and occupational noise-induced hearing loss in steel workers. Science of the total environment. 2009;408(1):43-9.
- 12. Maizlish NA, Parra G, Feo O. Neurobehavioural evaluation of Venezuelan workers exposed to inorganic lead. Occupational and Environmental Medicine. 1995;52(6):408-14.
- 13. Murata K, Araki S, Yokoyama K, Nomiyama K, Nomiyama H, Tao YX et al. Autonomic and central nervous system effects of lead in female glass workers in China. American journal of industrial medicine. 1995;28(2):233-44.
- 14. Yokoyama K, Araki S, Yamashita K, Murata K, Nomiyama K, Nomiyama H et al. Subclinical Cerebellar Anterior Lobe, Vestibulo-Cerebellar and Spinocerebellar Afferent Effects in Young Female Lead Workers in China: Computerized Posturography with Sway Frequency Analysis and Brainstem Auditory Evoked Potentials. Industrial health. 2002;40(3):245-53.
- 15. Wu TN, Shen CY, Lai JS, Goo CF, Ko KN, Chi HY et al. Effects of lead and noise exposures on hearing ability. Archives of Environmental Health: An International Journal. 2000;55(2):109-14.
- 16. Abdollahi M, Mojarad AL, Jalali N. Lead toxicity in employees of a paint factory. Medical Journal of The Islamic Republic of Iran (MJIRI). 1996;10(3):203-6.
- 17. Chen J, Tan M, Li Y, Zhang Y, Lu W, Tong Y et al. A lead isotope record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmospheric Environment. 2005;39(7):1245-53.
- 18. Sun Y, Zhuang G, Zhang W, Wang Y, Zhuang Y. Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing. Atmospheric Environment. 2006;40(16):2973-85.
- 19. Geagea ML, Stille P, Millet M, Perrone T. REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. Science of the Total Environment. 2007;373(1):404-19.
- 20. Wong MH, Wu SC, Deng WJ, Yu XZ, Luo Q, Leung AO et al. Export of toxic chemicals—a review of the case of uncontrolled electronic-waste recycling. Environmental Pollution. 2007;149(2):131-40.
- 21. Jacobs DE, Clickner RP, Zhou JY, Viet SM, Marker DA, Rogers JW et al. The prevalence of lead-based paint hazards in US housing. Environmental health perspectives. 2002;110(10):A599-606.
- 22. Clark CS, Rampal KG, Thuppil V, Chen CK, Clark R, Roda S. The lead content of currently available new residential paint in several Asian countries. Environmental Research. 2006;102(1):9-12.

- 23. Cifuentes E, Trasande L, Ramirez M, Landrigan PJ. A qualitative analysis of environmental policy and children's health in Mexico. Environmental Health. 2010;9(1):14.
- 24. Azcona-Cruz MI, Rothenberg SJ, Schnaas L, Zamora-Muñoz JS, Romero-Placeres M. Leadglazed ceramic ware and blood lead levels of children in the city of Oaxaca, Mexico. Archives of Environmental Health: An International Journal. 2000;55(3):217-22.
- 25. Isidra HS, Rosalba RM, Carlos GG, Hulme JM, Gustavo OF. Factors associated with lead exposure in Oaxaca, Mexico. Journal of Exposure Science & Environmental Epidemiology. 2003;13(5):341-7.
- 26. Guo Y, Huo X, Li Y, Wu K, Liu J, Huang J, et al. Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Science of the total environment. 2010;408(16):3113-7.
- 27. Al-Khashman OA, Shawabkeh RA. Metals distribution in soils around the cement factory in southern Jordan. Environmental pollution. 2006;140(3):387-94.
- 28. Edwards M, Triantafyllidou S, Best D. Elevated blood lead in young children due to lead-contaminated drinking water: Washington, DC, 2001–2004. Environmental science & technology. 2009;43(5):1618-23.
- 29. Sharma R, Pervez S. Toxic metals status in human blood and breast milk samples in an integrated steel

- plant environment in Central India. Environmental geochemistry and health. 2005;27(1):39-45.
- Mason J, Ortiz D, Pappas S, Quigley S, Yendell S, Ettinger AS. Response to the US FDA LeadCare Testing Systems Recall and CDC Health Alert. J Public Health Manag Pract. 2019;25S(1): S91-7.
- 31. Shargorodsky J, Curhan SG, Henderson E, Eavey R, Curhan GC. Heavy metal exposure and hearing loss in US adolescents. Arch Otolaryngol Head Neck Surg. 2011;137(12):1183-9.
- Ghiasvand M, Mohammadi S, Roth B, Ranjbar M. Relationship between Occupational Exposure to Lead and Hearing Loss in a Cross-sectional Survey of Iranian Workers. Front. Public Health. 2016;4:19.
- 33. Kang GH, Uhm JY, Choi YG. Environmental exposure of heavy metal (lead and cadmium) and hearing loss: data from the Korea National Health and Nutrition Examination Survey (KNHANES 2010–2013). Ann of Occup and Environ Med. 2018;30:22.

Cite this article as: Bhargava A, Faiz SM, Jafar T, Singh S, Goswami D, Singh H. Association of hearing loss and lead toxicity in a North Indian tertiary hospital: a pilot study. Int J Otorhinolaryngol Head Neck Surg 2020;6:1845-9.